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LETTER TO THE EDITOR 

New variational bounds on expectation values 

M F Barnsley and P D Robinson 
School of Mathematics, Bradford University, Bradford BD7 IDP, U K  

Received 28 July 1975, in final form 11 August 1975 

Abstract. New variational bounds on quantum mechanical expectation values are presented. 
An illustrative calculation for helium gives encouraging accuracy. 

In this note recent work concerning variational bounds on overlaps (Barnsley and 
Robinson 1975, referred to as I) is extended to yield new variational bounds on quantum 
mechanical expectation values. The practicality of the variational functionals is briefly 
discussed. An illustrative calculation for helium gives a more accurate result than 
comparable calculations of Weinhold (1969) and Wang (1971). As in I, the theory is 
first presented quite generally. 

Let A be a self-adjoint operator in a Hilbert space 2 with inner product (, ), and 
suppose that A admits a one-dimensional null space specified by an (unknown) eigen- 
vector 8, so that 

A 8  = 0, (e ,  0) = 1. (1) 

Let L be a self-adjoint, strictly positive operator in 2, which is such that the positive 
quantity (0, L e )  is of interest and requires bounding. Consider the following equation 
in A, the subspace of 2 which is orthogonal to 8: 

A$ = x - c L ~ ,  *E A, (2) 
where 

and x is some arbitrary known vector not orthogonal to 8. Since L is strictly positive 
it has a self-adjoint, positive inverse L - * .  Accordingly from (2) we have 

AL-'A* = A L - l x .  (4) 
The operator A L -  A is positive and self-adjoint, and the elementary Ritz-type 

variational principle associated with equation (4) is 

This simplifies to give the result 
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If the squared overlap I(x, 8)12 is either known, or has a known lower bound, then the 
variational inequality (6) provides a lower bound on (e, LO). 

A variational bound complementary to that in (6) can be derived when the operator 
A L -  ' A  is bounded below in A by some positive number m2, so that 

( 5 3  A L -  l A 0  b m2(5, 5 )  for all 5 E R. (7) 

This bound is given by subtracting the term 

(8) 
1 

- ( A L - ' A Y - A L - ' x ,  A L - l A Y  - A L - l X )  
m2 

from the functional in (6) (cf Robinson 1969, Arthurs 1970), yielding 

(If Y is set equal to 
order term in (9) vanishes. The second-order term can be expressed as 

+ S$, it can be verified directly from (1) and (2) that the first- 

and is non-positive by virtue of (7), since ( A L -  'A)'" S$ E R.) 

variational bound 
When the operator AL- ' A  is also bounded above in A by some number u2, then the 

is available as an alternative to (6). Clearly this is a tighter bound for the same trial 
vector Y,  but (6) and (1  1) are really equivalent for different Y ,  

In the special case L = 1, the variational bounds in (6), (9) and (11) reduce to the 
bounds on squared overlaps I(x, 8)12 which were discussed in I .  

In the event that the null space of A is spanned by t orthonormal eigenvectors 
{ e l ,  e', . . . e'), for which also (ei,  LOJ) = 0 when i # j ,  then the foregoing theory supplies 
bounds on the quantity 

Most of the overlap bounds used in quantum mechanics, together with variational 
improvements, were derived in I from the L = 1 versions of the bounds given above. If 
a system is described by a Hamiltonian H with energy eigenvalues ( E i }  and ortho- 
normal eigenvectors {ei}, one takes 8 as a particular &, x as the vector whose overlap 
with 8, is of interest, and A involving a suitable factor of ( H  - Ek). Similar substitutions 
can be made in the new functionals presented here in order to obtain bounds on quantum 
mechanical expectation values ( O k ,  Lo,) where L is now the operator representing some 
observable of interest. 

Making the straightforward choice of ( H - E , )  for A in ( 6 )  we obtain 
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Likewise (9) yields 

we can take 

m2 = (E,  -E , ) ’qZ ,  (16) 

E,  being the closest eigenvalue to E,. For the ground state 0, ,  the simpler result 

is available from the choice A = ( H - E , ) L ’ 2  together with the replacement of Y by 
(H-Eo)1 ’2Y  in (9). If L-’ does not have a positive lower bound q2 as in (15), it might 
be feasible to employ as m2 some lower bound to the smallest positive (nonzero) eigen- 
value of the operator AL- ‘ A .  

We have assumed that the eigenvalue E,  is not degenerate; if i t  is, then certain adjust- 
ments are needed in accordance with (12). 

The variational functional (13) is the simplest one to use, and provides a lower 
bound on the expectation value ( O , ,  LO,) for any state 0,. It is assumed that E ,  is known, 
or has known bounds, and also that the squared overlap I ( x ,  @ , ) I 2  is known, or has a 
known lower bound. Such assumptions are customary in deriving bounds on expecta- 
tion values (Weinhold 1970, Wang 1971). Any of the variational functionals which 
furnish lower bounds on overlaps might be employed in conjunction with (13). For 
example, a combination of (13) and (17) with L = 1 leads to the bivariational quotient 
lower bound 

To illustrate the accuracy of (13). we calculated a lower bound on the expectation of 
( r l  J- I for ground state helium. The amplitude-optimized, ground state version of ( 1  3), 
namely 

was used with L-’ = r 1 2 ,  E ,  = -2.90372 (atomic units), and as reference vector the 
minimum-energy hydrogenic function 

x = u3/n  exp[ - a(rl  + r 2 ) ] ,  2 = 1.6875, 

for which Weinhold (1969) gives the lower bound 

I(x, 6,)12 3 0.9870. 

The hydrogenic trial function 

‘Y = exp[ - B(r + r 2 ) ] ,  p = 2.01 (optimal value) (22) 
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in (19) leads with (21) to the result 

The ‘exact’ value of Pekeris (1959) is 0.9458 and the lower bound in (23) is 98.2 % of that. 
Such accuracy from a one-parameter trial vector is remarkable. This result is superior to 
the more sophisticated calculation of Weinhold (1969) which gave a 96.7 % lower bound, 
and to Wang’s (1971) best result (88.9%). In turn, these latter improved on the method 
of Mazziotti and Parr (1970). One has to look to the work of Chong and Weinhold 
(1973) with 135-term trial vectors in order to find a tighter lower bound. 
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